Fabrication and Pilot In Vivo Study of a Collagen-BDDGE-Elastin Core-Shell Scaffold for Tendon Regeneration

نویسندگان

  • Monica Sandri
  • Giuseppe Filardo
  • Elizaveta Kon
  • Silvia Panseri
  • Monica Montesi
  • Michele Iafisco
  • Elisa Savini
  • Simone Sprio
  • Carla Cunha
  • Gianluca Giavaresi
  • Francesca Veronesi
  • Milena Fini
  • Luca Salvatore
  • Alessandro Sannino
  • Maurilio Marcacci
  • Anna Tampieri
چکیده

The development of bio-devices for complete regeneration of ligament and tendon tissues is presently one of the biggest challenges in tissue engineering. Such device must simultaneously possess optimal mechanical performance, suitable porous structure, and biocompatible microenvironment. This study proposes a novel collagen-BDDGE-elastin (CBE)-based device for tendon tissue engineering, by the combination of two different modules: (i) a load-bearing, non-porous, "core scaffold" developed by braiding CBE membranes fabricated via an evaporative process and (ii) a hollow, highly porous, "shell scaffold" obtained by uniaxial freezing followed by freeze-drying of CBE suspension, designed to function as a physical guide and reservoir of cells to promote the regenerative process. Both core and shell materials demonstrated good cytocompatibility in vitro, and notably, the porous shell architecture directed cell alignment and population within the sample. Finally, a prototype of the core module was implanted in a rat tendon lesion model, and histological analysis demonstrated its safety, biocompatibility, and ability to induce tendon regeneration. Overall, our results indicate that such device may have the potential to support and induce in situ tendon regeneration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of novel tubular scaffold for tendon repair from chitosan in combination with zinc nanoparticles

Chitosan bears numerous properties, such as biocompatibility, biodegradability and non-toxicity making it suitable for use in different biomedical fields. Zinc (Zn) is required for fibroblasts proliferation and collagen synthesis as essential elements of wound healing. Its nanoparticles are well known for their capability to enhance wound healing by cell adhesion and migration improvement throu...

متن کامل

Synthetic collagen fascicles for the regeneration of tendon tissue.

The structure of an ideal scaffold for tendon regeneration must be designed to provide a mechanical, structural and chemotactic microenvironment for native cellular activity to synthesize functional (i.e. load bearing) tissue. Collagen fibre scaffolds for this application have shown some promise to date, although the microstructural control required to mimic the native tendon environment has ye...

متن کامل

Healing Potential of Mesenchymal Stem Cells Cultured on a Collagen-Based Scaffold for Skin Regeneration

Background: Wound healing of burned skin remains a major goal in public health. Previous reports showed that the bone marrow stem cells were potent in keratinization and vascularization of full thickness skin wounds. Methods: In this study, mesenchymal stem cells were derived from rat adipose tissues and characterized by flowcytometry. Staining methods were used to evaluate their differentiatio...

متن کامل

Evaluation of the Effect of Platelet Rich Plasma (PRP) in Tendon Gap Healing by Measuring Collagen Synthesis in Guinea Pig

Objectives- Hydroxyproline is a specific amino acid of collagen which is widely used to estimate the collagen content in biological specimens. The purpose of this study was to compare the effect of the Platelet Rich Plasma (PRP) on tendon gap healing using two different scaffold made from subcutaneous fascia and polypropylene tube. Design- Experimental study Animals - 16 young adult Guinea pigs...

متن کامل

Anterior Cruciate Ligament Reconstruction in a Rabbit Model Using Silk-Collagen Scaffold and Comparison with Autograft

The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL) reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016